login
A269257
Primes p such that p+2^4, p+2^6 and p+2^8 are all primes.
6
7, 37, 163, 337, 757, 967, 1033, 1303, 2293, 2377, 2647, 2713, 3607, 5023, 6763, 7417, 8677, 8803, 9157, 9277, 10273, 14683, 14827, 15313, 15667, 16417, 20113, 21163, 21757, 22093, 24907, 27043, 27763, 29803, 29863, 32173, 34897, 36793, 36997, 37783, 38287, 38977, 39607
OFFSET
1,1
FORMULA
A049488 INTERSECT A049490 INTERSECT A361483. - R. J. Mathar, Mar 26 2024
EXAMPLE
The prime 7 is in the sequence because 7+16 = 23, 7+64 = 71 and 7+256 = 263 are all primes.
The prime 37 is in the sequence because 37+16 = 53, 37+64 = 101 and 37+256 = 293 are all primes.
MATHEMATICA
Select[Prime[Range[10000]], PrimeQ[# + 2^4] && PrimeQ[# + 2^6] && PrimeQ[# + 2^8]&] (* Jean-François Alcover, Jul 12 2016 *)
With[{c=2^Range[4, 8, 2]}, Select[Prime[Range[4200]], AllTrue[#+c, PrimeQ]&]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 21 2017 *)
PROG
(PARI) is(n)=n%6==1 && isprime(n+16) && isprime(n+64) && isprime(n+256) && isprime(n) \\ Charles R Greathouse IV, Jul 12 2016
(Perl) use ntheory ":all"; say for sieve_prime_cluster(2, 1e6, 16, 64, 256); # Dana Jacobsen, Jul 13 2016
CROSSREFS
Subsequence of A002476, A049488, and A049490.
Sequence in context: A036678 A085720 A201962 * A269258 A247308 A175284
KEYWORD
nonn
AUTHOR
STATUS
approved