Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #10 Jan 18 2019 04:44:38
%S 17,37,97,457,1087,4787,10837,28277,39607,61297,131267,250687,425837,
%T 2385587,2718017,3208327,5247757,6996907,7402867,23363807,27615167,
%U 46360747,103494877,118885867,499145587,544699457,705339487,760950587,1625987527
%N Primes 10k + 7 at the end of the maximal gaps in A269238.
%C Subsequence of A030432.
%C A269238 lists the corresponding record gap sizes. See more comments there.
%H Alexei Kourbatov, <a href="/A269240/b269240.txt">Table of n, a(n) for n = 1..37</a>
%H Alexei Kourbatov and Marek Wolf, <a href="https://arxiv.org/abs/1901.03785">Predicting maximal gaps in sets of primes</a>, arXiv preprint arXiv:1901.03785 [math.NT], 2019.
%e The first two primes of the form 10k + 7 are 7 and 17, so a(1)=17. The next prime of this form is 37 and the gap 37-17=20 is a new record, so a(2)=37.
%o (PARI) re=0; s=7; forprime(p=17, 1e8, if(p%10!=7, next); g=p-s; if(g>re, re=g; print1(p", ")); s=p)
%Y Cf. A030432, A269238, A269239.
%K nonn
%O 1,1
%A _Alexei Kourbatov_, Feb 20 2016