

A269235


Primes 10k + 3 preceding the maximal gaps in A269234.


3



3, 23, 113, 883, 3083, 4153, 6373, 8123, 9973, 13183, 13313, 27283, 155893, 1046413, 1086923, 4343363, 5648893, 9291643, 18819043, 32015143, 38024003, 53663903, 90420223, 133125203, 169727083, 228590023, 284825263, 318827423, 431958913, 949477663, 1054255883, 2343368663, 7392448253, 15207878993, 28072101283
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Subsequence of A030431.
A269234 lists the corresponding record gap sizes. See more comments there.


LINKS

Alexei Kourbatov, Table of n, a(n) for n = 1..35
Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019.


EXAMPLE

The first two primes of the form 10k + 3 are 3 and 13, so a(1)=3. The next prime of this form is 23; the gap 2313 is not a record so nothing is added to the sequence. The next prime of this form is 43 and the gap 4323=20 is a new record, so a(2)=23.


PROG

(PARI) re=0; s=3; forprime(p=13, 1e8, if(p%10!=3, next); g=ps; if(g>re, re=g; print1(s", ")); s=p)


CROSSREFS

Cf. A030431, A269234, A269236.
Sequence in context: A197557 A225671 A267816 * A245752 A290367 A006557
Adjacent sequences: A269232 A269233 A269234 * A269236 A269237 A269238


KEYWORD

nonn


AUTHOR

Alexei Kourbatov, Feb 20 2016


STATUS

approved



