login
A269235
Primes 10k + 3 preceding the maximal gaps in A269234.
3
3, 23, 113, 883, 3083, 4153, 6373, 8123, 9973, 13183, 13313, 27283, 155893, 1046413, 1086923, 4343363, 5648893, 9291643, 18819043, 32015143, 38024003, 53663903, 90420223, 133125203, 169727083, 228590023, 284825263, 318827423, 431958913, 949477663, 1054255883, 2343368663, 7392448253, 15207878993, 28072101283
OFFSET
1,1
COMMENTS
Subsequence of A030431.
A269234 lists the corresponding record gap sizes. See more comments there.
LINKS
Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019.
EXAMPLE
The first two primes of the form 10k + 3 are 3 and 13, so a(1)=3. The next prime of this form is 23; the gap 23-13 is not a record so nothing is added to the sequence. The next prime of this form is 43 and the gap 43-23=20 is a new record, so a(2)=23.
PROG
(PARI) re=0; s=3; forprime(p=13, 1e8, if(p%10!=3, next); g=p-s; if(g>re, re=g; print1(s", ")); s=p)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexei Kourbatov, Feb 20 2016
STATUS
approved