login
A269130
a(n) = n + (n base 2 regarded as a decimal number).
1
0, 2, 12, 14, 104, 106, 116, 118, 1008, 1010, 1020, 1022, 1112, 1114, 1124, 1126, 10016, 10018, 10028, 10030, 10120, 10122, 10132, 10134, 11024, 11026, 11036, 11038, 11128, 11130, 11140, 11142, 100032, 100034, 100044, 100046, 100136, 100138, 100148, 100150, 101040
OFFSET
0,2
COMMENTS
All terms in this sequence are even, because every even number produces an even binary number (ends with 0) and every odd number produces an odd binary number (ends with 1).
LINKS
FORMULA
a(n) = A007088(n) + n.
EXAMPLE
a(4) = convert_to_binary(4) + 4 = 100 + 4 = 104.
MATHEMATICA
Table[n+FromDigits[IntegerDigits[n, 2]], {n, 0, 40}] (* Harvey P. Dale, Jul 08 2019 *)
PROG
(PARI) a(n)=fromdigits(binary(n))+n \\ Charles R Greathouse IV, Feb 19 2016
(PARI) a(n) = subst(Pol(binary(n)), x, 10) + n \\ Michel Marcus, Feb 20 2016
CROSSREFS
Cf. A000027 (counting numbers), A007088 (binary numbers).
Cf. A127906 (multiplicated), A228071 (subtracted).
Sequence in context: A340016 A260899 A108969 * A265485 A166745 A352504
KEYWORD
nonn,easy,base
AUTHOR
Isaac S. Friedman, Feb 19 2016
STATUS
approved