%I
%S 128,3272,91491,2144780,49084071,1073436321,22995344760,483176766982,
%T 10012943674291,205190835537996,4165999185526245,83946395869892249,
%U 1680542804576091072,33458893826064355756,662949906600663076935
%N Number of 7Xn binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two not more than once.
%C Row 7 of A268995.
%H R. H. Hardin, <a href="/A269001/b269001.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A269001/a269001.txt">Empirical recurrence of order 68</a>
%F Empirical recurrence of order 68 (see link above)
%e Some solutions for n=3
%e ..0..1..1. .1..0..0. .0..0..1. .1..1..0. .0..0..1. .1..1..0. .0..1..0
%e ..0..0..1. .0..1..0. .1..0..1. .0..0..1. .1..0..1. .0..0..0. .0..0..1
%e ..1..0..0. .0..1..1. .0..0..0. .0..0..0. .0..0..0. .1..0..0. .1..0..1
%e ..0..0..1. .0..0..0. .1..0..1. .1..0..1. .0..0..1. .0..1..0. .1..0..0
%e ..1..0..1. .0..0..1. .0..0..1. .1..0..0. .0..1..0. .0..0..0. .0..0..0
%e ..0..0..0. .0..0..1. .0..0..0. .1..0..1. .0..1..0. .0..1..0. .1..0..0
%e ..0..0..1. .1..0..0. .0..1..0. .1..0..0. .0..0..0. .0..0..1. .1..0..0
%Y Cf. A268995.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 17 2016
