login
A269000
Number of 6Xn binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two not more than once.
1
64, 1121, 19416, 308112, 4583103, 66954420, 946498448, 13228660133, 181784804730, 2475749104139, 33385659799195, 447113747804052, 5948793054106681, 78732585838628885, 1037092115497761586
OFFSET
1,1
COMMENTS
Row 6 of A268995.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) +237*a(n-2) +556*a(n-3) -17745*a(n-4) -102122*a(n-5) +202421*a(n-6) +2379616*a(n-7) -22987*a(n-8) -27364786*a(n-9) -13031593*a(n-10) +199889692*a(n-11) +91121845*a(n-12) -1012462462*a(n-13) -190133151*a(n-14) +3595273076*a(n-15) -642988498*a(n-16) -8640634728*a(n-17) +4929067410*a(n-18) +12985931924*a(n-19) -13174973746*a(n-20) -9991379232*a(n-21) +18252268246*a(n-22) +272964868*a(n-23) -13058804606*a(n-24) +5323457016*a(n-25) +4041105222*a(n-26) -3401387484*a(n-27) -210272991*a(n-28) +912442186*a(n-29) -169777035*a(n-30) -118543140*a(n-31) +43493135*a(n-32) +6734614*a(n-33) -4652195*a(n-34) -21632*a(n-35) +259061*a(n-36) -13682*a(n-37) -7961*a(n-38) +524*a(n-39) +133*a(n-40) -6*a(n-41) -a(n-42)
EXAMPLE
Some solutions for n=3
..0..1..0. .0..0..0. .0..1..1. .0..1..0. .0..1..0. .0..0..0. .0..0..1
..0..0..1. .0..1..0. .0..0..1. .0..0..1. .0..0..0. .0..0..0. .0..0..1
..1..0..0. .0..0..1. .1..0..1. .0..0..1. .0..1..0. .1..0..0. .1..0..1
..1..0..1. .1..0..0. .1..0..1. .0..0..0. .1..0..0. .0..1..0. .1..0..1
..0..1..0. .0..1..0. .0..0..0. .1..0..0. .1..0..0. .0..1..1. .0..0..0
..0..0..0. .0..1..1. .0..0..1. .1..1..0. .1..0..0. .0..0..0. .0..1..0
CROSSREFS
Cf. A268995.
Sequence in context: A223070 A191900 A191494 * A189276 A081102 A250171
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 17 2016
STATUS
approved