%I #11 Feb 16 2016 11:54:17
%S 5,4,1,2,3,5,7,3,4,3,2,8,6,7,0,5,3,0,1,4,9,5,3,7,3,2,8,8,7,9,5,5,2,0,
%T 1,3,8,9,9,2,5,6,2,0,6,6,4,9,9,7,6,0,9,7,3,5,8,9,6,1,2,5,5,1,6,7,9,1,
%U 1,8,9,1,4,3,0,5,2,6,3,8,4,4,2,5,0,9,4,2,3,8,4,2,0,2,6,2,5,6,8,5,5,3,4,4
%N Decimal expansion of the integral int_{x=0..1} 1/Gamma(x) dx.
%C Gamma(x) is the gamma function. The value of this integral may also be accurately estimated by using bounds given in comments of A268895.
%e 0.5412357343286705301495373288795520138992562066499760...
%p evalf(Int(1/GAMMA(x), x = 0..1), 60);
%t NIntegrate[1/Gamma[x], {x, 0, 1}, WorkingPrecision->150]
%o (PARI) default(realprecision, 150); intnum(x=0,1,1/gamma(x))
%Y Cf. A268895.
%K nonn,cons
%O 0,1
%A _Iaroslav V. Blagouchine_, Feb 15 2016