login
Number of sequences with 9 copies each of 1,2,...,n and longest increasing subsequence of length n.
3

%I #9 Mar 03 2016 02:40:59

%S 1,1,48619,227749730869,21364658238692907265,

%T 18683332440278067962764855531,96042041352156959435669839199503441435,

%U 2124172213523649116114190361767338538457819064671,161347197004751609388708454579308609212572710243373701247489

%N Number of sequences with 9 copies each of 1,2,...,n and longest increasing subsequence of length n.

%H Alois P. Heinz, <a href="/A268852/b268852.txt">Table of n, a(n) for n = 0..65</a>

%H J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. <a href="http://www.ams.org/mathscinet-getitem?mr=681905">MR 681905</a>

%F a(n) ~ 3 * (9^9/8!)^n * n^(8*n) / exp(8*(n+1)). - _Vaclav Kotesovec_, Mar 03 2016

%t Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[k!/(i1!*i2!*i3!*i4!*i5!*i6!*i7!*i8!*(k - i1 - i2 - i3 - i4 - i5 - i6 - i7 - i8)!)*(9*k)!/(i1 + 2*i2 + 3*i3 + 4*i4 + 5*i5 + 6*i6 + 7*i7 + 8*i8 + 9*(k - i1 - i2 - i3 - i4 - i5 - i6 - i7 - i8))!*(-1)^(i1 + 2*i2 + 3*i3 + 4*i4 + 5*i5 + 6*i6 + 7*i7 + 8*i8 + 9*(k - i1 - i2 - i3 - i4 - i5 - i6 - i7 - i8) - k)/(8!^i1 * 7!^i2 * 6!^i3 * 5!^i4 * 4!^i5 * 3!^i6 * 2!^i7), {i8, 0, k - i1 - i2 - i3 - i4 - i5 - i6 - i7}], {i7, 0, k - i1 - i2 - i3 - i4 - i5 - i6}], {i6, 0, k - i1 - i2 - i3 - i4 - i5}], {i5, 0, k - i1 - i2 - i3 - i4}], {i4, 0, k - i1 - i2 - i3}], {i3, 0, k - i1 - i2}], {i2, 0, k - i1}], {i1, 0, k}], {k, 0, 10}] (* _Vaclav Kotesovec_, Mar 02 2016, after Horton and Kurn *)

%Y Row n=9 of A047909.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Feb 14 2016