OFFSET
0,3
LINKS
Vaclav Kotesovec and Alois P. Heinz, Table of n, a(n) for n = 0..97 (terms n=0..34 from Vaclav Kotesovec)
J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. MR 681905
FORMULA
a(n) ~ 2^(3*n + 1/2) * 3^(5*n + 1/2) * n^(5*n) / (5^n * exp(5*(n+1))). - Vaclav Kotesovec, Feb 21 2016
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[k!/(i1!*i2!*i3!*i4!*i5!*(k - i1 - i2 - i3 - i4 - i5)!)*(6*k)!/(i1 + 2*i2 + 3*i3 + 4*i4 + 5*i5 + 6*(k - i1 - i2 - i3 - i4 - i5))!*(-1)^(i1 + 2*i2 + 3*i3 + 4*i4 + 5*i5 + 6*(k - i1 - i2 - i3 - i4 - i5) - k)/(120^ i1*24^i2*6^i3*2^i4), {i5, 0, k - i1 - i2 - i3 - i4}], {i4, 0, k - i1 - i2 - i3}], {i3, 0, k - i1 - i2}], {i2, 0, k - i1}], {i1, 0, k}], {k, 0, 10}] (* Vaclav Kotesovec, Mar 02 2016, after Horton and Kurn *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 14 2016
STATUS
approved