login
A268809
T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two not more than once.
8
3, 9, 9, 24, 34, 24, 60, 104, 104, 60, 144, 290, 332, 290, 144, 336, 772, 1202, 1202, 772, 336, 768, 1972, 4158, 5848, 4158, 1972, 768, 1728, 4914, 14308, 28452, 28452, 14308, 4914, 1728, 3840, 12010, 48460, 135912, 195384, 135912, 48460, 12010, 3840, 8448
OFFSET
1,1
COMMENTS
Table starts
....3.....9......24.......60........144.........336...........768
....9....34.....104......290........772........1972..........4914
...24...104.....332.....1202.......4158.......14308.........48460
...60...290....1202.....5848......28452......135912........640926
..144...772....4158....28452.....195384.....1316226.......8734264
..336..1972...14308...135912....1316226....12432856.....115671422
..768..4914...48460...640926....8734264...115671422....1508087180
.1728.12010..162722..2990786...57302798..1062318610...19390335102
.3840.28922..541744.13835892..372342650..9657289546..246666802206
.8448.68836.1791504.63544542.2400532536.87052567448.3110082281974
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) -4*a(n-2)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-3) -6*a(n-4) -4*a(n-5) -a(n-6) for n>7
k=3: [order 10] for n>12
k=4: [order 16] for n>19
k=5: [order 26] for n>29
k=6: [order 42] for n>45
k=7: [order 68] for n>71
EXAMPLE
Some solutions for n=4 k=4
..1..2..1..2. .1..0..0..0. .2..2..1..2. .2..1..0..1. .2..2..1..2
..1..2..2..2. .0..0..1..0. .1..2..2..2. .0..0..0..0. .1..2..1..2
..2..2..2..1. .0..0..0..1. .2..1..2..1. .0..1..0..0. .2..2..2..2
..2..2..2..2. .0..0..0..0. .2..2..1..2. .0..0..0..0. .2..2..1..2
CROSSREFS
Column 1 is A084858.
Sequence in context: A207235 A207228 A207015 * A268628 A269052 A268971
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 13 2016
STATUS
approved