%I #4 Feb 13 2016 12:26:07
%S 38,850,14984,228384,3295246,45515227,611932378,8057509992,
%T 104456486696,1337467436839,16954554895936,213155407369839,
%U 2661273257222436,33030289066656341,407868045265169610,5014148928763408926
%N Number of nX7 binary arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two exactly once.
%C Column 7 of A268789.
%H R. H. Hardin, <a href="/A268788/b268788.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A268788/a268788.txt">Empirical recurrence of order 68</a>
%F Empirical recurrence of order 68 (see link above)
%e Some solutions for n=3
%e ..0..0..0..0..0..1..0. .0..1..0..0..1..0..0. .1..1..0..0..0..1..0
%e ..1..0..0..0..0..0..1. .0..0..0..1..0..0..0. .0..0..0..0..0..0..0
%e ..0..0..0..1..0..0..1. .0..1..0..0..0..1..0. .1..0..0..0..0..1..0
%Y Cf. A268789.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 13 2016