|
|
A268707
|
|
Smallest n-digit prime having at least n-1 digits equal to 9.
|
|
6
|
|
|
2, 19, 199, 1999, 49999, 199999, 2999999, 19999999, 799999999, 9199999999, 59999999999, 959999999999, 9919999999999, 59999999999999, 499999999999999, 9299999999999999, 99919999999999999, 994999999999999999, 9991999999999999999, 29999999999999999999
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Michel Lagneau, Michael De Vlieger and Robert G. Wilson v, Table of n, a(n) for n = 1..1225
|
|
MATHEMATICA
|
f[n_] := Block[{k = 0, p = {}, r = (10^n - 1), s = Range@ 10 - 10}, While[k < n - 0, AppendTo[p, Select[r + 10^k*s, PrimeQ]]; k++]; p = Min@ Flatten@ p]; Array[f, 20]
|
|
PROG
|
(PARI) a(n)=my(t=10^n-1, p); forstep(d=n-1, 0, -1, forstep(k=8, 1, -1, p=t-10^d*k; if(ispseudoprime(p), return(p)))); -1 \\ Charles R Greathouse IV, Mar 21 2016
|
|
CROSSREFS
|
Cf. A037071, A241100, A268702 - A268706, A241206, A266148.
Sequence in context: A218117 A145104 A114016 * A037071 A126039 A091852
Adjacent sequences: A268704 A268705 A268706 * A268708 A268709 A268710
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Michel Lagneau, Michael De Vlieger and Robert G. Wilson v, Feb 11 2016
|
|
STATUS
|
approved
|
|
|
|