

A268668


Number of factorizations of m^4 into n factors, where m is a product of exactly n distinct primes and each factor is a product of 4 primes (counted with multiplicity).


1




OFFSET

0,3


COMMENTS

Also number of ways to partition the multiset consisting of 4 copies each of 1, 2, ..., n into n multisets of size 4.


LINKS

Table of n, a(n) for n=0..9.


EXAMPLE

a(2) = 3: (2*3)^4 = 1296 = 36*36 = 54*24 = 81*16.
a(3) = 23: (2*3*5)^4 = 810000 = 100*90*90 = 100*100*81 = 135*100*60 = 150*90*60 = 150*100*54 = 150*135*40 = 150*150*36 = 225*60*60 = 225*90*40 = 225*100*36 = 225*150*24 = 225*225*16 = 250*60*54 = 250*81*40 = 250*90*36 = 250*135*24 = 375*54*40 = 375*60*36 = 375*90*24 = 375*135*16 = 625*36*36 = 625*54*24 = 625*81*16.


CROSSREFS

Column k=4 of A257463.
Sequence in context: A298466 A116986 A271962 * A171777 A154896 A134050
Adjacent sequences: A268665 A268666 A268667 * A268669 A268670 A268671


KEYWORD

nonn,more


AUTHOR

Alois P. Heinz, Feb 10 2016


STATUS

approved



