%I #19 Apr 03 2023 10:36:13
%S 3,55,127,13165,240937,819739,1282755
%N Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 3^(2^m) + 1 for some m.
%D Wilfrid Keller, private communication, 2008.
%H Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-98-00891-6">Factors of generalized Fermat numbers</a>, Math. Comp. 67 (1998), no. 221, pp. 441-446.
%H Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-05-01816-8">Table errata to “Factors of generalized Fermat numbers”</a>, Math. Comp. 74 (2005), no. 252, p. 2099.
%H Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-10-02371-9">Table errata 2 to "Factors of generalized Fermat numbers"</a>, Math. Comp. 80 (2011), pp. 1865-1866.
%H C. K. Caldwell, Top Twenty page, <a href="https://t5k.org/top20/page.php?id=28">Generalized Fermat Divisors (base=3)</a>
%H OEIS Wiki, <a href="/wiki/Generalized_Fermat_numbers">Generalized Fermat numbers</a>
%Y Cf. A059919, A268662, A268663, A226366, A268664, A268657, A268658, A204620, A268659, A268660. Subsequence of A002254.
%K nonn,hard,more
%O 1,1
%A _Arkadiusz Wesolowski_, Feb 10 2016