login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A268601 Expansion of 1/(2*f(x)) - 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x). 1
0, 0, 2, 8, 34, 120, 468, 1680, 6530, 23960, 93532, 348656, 1366260, 5149872, 20238696, 76907808, 302903874, 1158168792, 4569270156, 17555689008, 69356428284, 267518448912, 1058057586456, 4094231982048, 16208177203764, 62887835652720, 249156625186328, 968943740083040, 3841488520364200, 14968574892499040, 59379627044952528 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) is the number of North-East lattice paths from (0,0) to (n,n) in which the total number of east steps below y = x - 1 or above y = x + 1 is odd. Details can be found in Section 4.1 in Pan and Remmel's link.

LINKS

Table of n, a(n) for n=0..30.

Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.

FORMULA

a(n) = binomial(2*n,n) - A268600(n).

G.f.: 1/(2*f(x)) - 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x).

PROG

(PARI) x = 'x + O('x^30); concat(vector(2), Vec(1/(2*sqrt(1-4*x)) - 1/(4 - 2*sqrt(1+4*x)))) \\ Michel Marcus, Feb 11 2016

CROSSREFS

Cf. A268462, A268586, A268587, A268598, A268599.

Sequence in context: A191551 A263627 A172448 * A026577 A204090 A226495

Adjacent sequences:  A268598 A268599 A268600 * A268602 A268603 A268604

KEYWORD

nonn

AUTHOR

Ran Pan, Feb 08 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 21:44 EST 2019. Contains 329809 sequences. (Running on oeis4.)