login
A268432
a(n) = Pochhammer(n+1, n)/Clausen(n, 1) = A001813(n) / A160014(n, 1).
2
1, 1, 2, 60, 56, 15120, 15840, 8648640, 17297280, 8821612800, 10158220800, 14079294028800, 474467051520, 32382376266240000, 582882772792320000, 101421602465863680000, 24659370011308032000, 415017197290314178560000, 72810034612335820800000, 2149789081963827444940800000
OFFSET
0,3
FORMULA
Let b(n) = Pochhammer(n+1,n)/denominator(Bernoulli(n)) then a(2*n) = b(2*n) for n >= 0 and 2*a(2*n+1) = b(2*n+1) for n >= 1 by the von Staudt-Clausen theorem.
MAPLE
a := proc(n) numtheory[divisors](n); map(i->i+1, %);
iquo(mul(4*k+2, k in (0..n-1)), mul(k, k in select(isprime, %))) end:
seq(a(n), n=0..19);
PROG
(Sage)
def A268432(n):
if n <= 1: return 1
r = rising_factorial(n+1, n)//bernoulli(n).denominator()
return r if is_even(n) else r//2
[A268432(n) for n in range(20)]
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Feb 14 2016
STATUS
approved