%I #15 Apr 08 2021 07:24:14
%S 99528,117040,143520,199056,234080,287040,288288,294216,298584,349440,
%T 357357,383040,398112,430560,468160,574080,576576,585200,588432,
%U 597168,631488,698880,717600,766080,796224,819280,861120,864864,870870,882648,895752,901824,936320,957000
%N Numbers other than prime powers divisible by the sum and the sum of squares of their prime divisors.
%C Intersection of A066031 and A190882.
%C Prime divisors taken without multiplicity. - _Harvey P. Dale_, Dec 27 2018
%H Amiram Eldar, <a href="/A268417/b268417.txt">Table of n, a(n) for n = 1..10000</a>
%H Jean-Marie de Koninck and Florian Luca, <a href="http://dx.doi.org/10.1016/j.jnt.2007.01.010">Integers divisible by sums of powers of their prime factors</a>, Journal of Number Theory, Volume 128, Issue 3, March 2008, Pages 557-563.
%t dssQ[n_]:=Module[{pf=FactorInteger[n][[All,1]]},!PrimePowerQ[ n] && Divisible[ n, Total[pf]]&&Divisible[n,Total[pf^2]]]; Select[ Range[ 960000],dssQ] (* _Harvey P. Dale_, Dec 27 2018 *)
%o (PARI) isok(n) = my(f = factor(n)[,1]); (#f>2) && ((n % vecsum(f)) == 0) && ((n % sum(k=1, #f, f[k]^2)) == 0);
%Y Cf. A066031, A190882.
%K nonn
%O 1,1
%A _Michel Marcus_, Feb 04 2016