login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A268412 Balanced evil numbers: numbers with an even number of runs of 1's in their binary expansion. 6

%I

%S 0,5,9,10,11,13,17,18,19,20,22,23,25,26,27,29,33,34,35,36,38,39,40,44,

%T 46,47,49,50,51,52,54,55,57,58,59,61,65,66,67,68,70,71,72,76,78,79,80,

%U 85,88,92,94,95,97,98,99,100,102,103,104,108,110,111,113,114

%N Balanced evil numbers: numbers with an even number of runs of 1's in their binary expansion.

%C In balanced binary system the sequence A268411 plays role of Thue-Morse sequence (A010060). Therefore, we call the balanced evil numbers those numbers n for which A268411(n) = 0.

%H Peter J. C. Moses (terms 0..999) & Antti Karttunen, <a href="/A268412/b268412.txt">Table of n, a(n) for n = 0..8256</a>

%H Vladimir Shevelev, <a href="http://arxiv.org/abs/1603.04434">Two analogs of Thue-Morse sequence</a>, arXiv:1603.04434 [math.NT], 2016.

%F Other identities. For all n >= 0:

%F A268383(a(n)) = n.

%e In binary representation 19=10011 has an even number (two) of runs of 1's. So, 19 is a member.

%t balancedBinary:=Join[#,{0}]-Join[{0},#]&[IntegerDigits[#,2]]&;

%t Flatten[Position[Map[Mod[Count[balancedBinary[#],1],2]&,Range[0,100]],0,1]-1] (* _Peter J. C. Moses_, Feb 04 2016 *)

%o (Python)

%o A268412_list = [i for i in range(10**6) if not len(list(filter(bool,format(i,'b').split('0')))) % 2] # _Chai Wah Wu_, Mar 01 2016

%Y Positions of even terms in A069010.

%Y Cf. A010060, A001969, A268411.

%Y Cf. A268415 (complement).

%Y Cf. A268383 (the least monotonic left inverse).

%Y Cf. A268476 (primes in this sequence).

%K nonn,base

%O 0,2

%A _Vladimir Shevelev_, Feb 04 2016

%E More terms from _Peter J. C. Moses_, Feb 04 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 20:41 EDT 2019. Contains 322328 sequences. (Running on oeis4.)