login
A268402
Number of North-East lattice paths from (0,0) to (n,n) that bounce off the diagonal y = x to the right exactly four times.
0
1, 7, 40, 204, 977, 4493, 20091, 88025, 379766, 1618898, 6835636, 28640302, 119236085, 493772409, 2035611612, 8359873866, 34219553297, 139672169795, 568675783762, 2310315996126, 9367885987455, 37920179012135, 153263612914150, 618611076034828, 2493830719572639, 10042451847789161
OFFSET
5,2
COMMENTS
This sequence is related to paired pattern P_2 in Pan and Remmel's link.
By symmetry, it is also the number of North-East lattice paths from (0,0) to (n,n) that bounce off the diagonal y = x to the left exactly four times.
LINKS
Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
FORMULA
G.f.: -((-1 + f(x))^5*x^3*(-1 + f(x) + 2*x))/(2*(1 - f(x) + (-5 + f(x))*x)^5), where f(x) = sqrt(1 - 4*x).
Conjecture: -(n-3)*(n-5)*(55*n-618)*a(n) +(-55*n^3-840*n^2+6969*n-5742)*a(n-1)
+(3135*n^3 -37532*n^2 +138815*n -163614)*a(n-2) +(-7645*n^3 +93072*n^2 -343985*n +391386)*a(n-3) -18*(n-3)*(55*n-126)*(2*n-5)*a(n-4)=0. - R. J. Mathar, Oct 07 2016
CROSSREFS
Sequence in context: A055282 A252816 A093737 * A351529 A081039 A227748
KEYWORD
nonn
AUTHOR
Ran Pan, Feb 03 2016
STATUS
approved