login
A268350
Primes p where q = p + 4 is also prime and rad((p+1)(p+2)(p+3)) < pq, where rad(k) is the largest squarefree number dividing k.
1
7, 13, 79, 97, 223, 349, 673, 1087, 1213, 1663, 3697, 13309, 13687, 16927, 20479, 21139, 25999, 32797, 33613, 78649, 122449, 151549, 263167, 401407, 651247, 1058749, 1656247, 1893373, 2060449, 2146687, 3058873, 3276799, 3733207, 3866623, 3880897, 4070197
OFFSET
1,1
COMMENTS
Are there any consecutive primes p and q for which rad((p+1)(p+2)...(q-1)) < pq with q - p > 4?
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..299
EXAMPLE
79 and 83 are prime, and rad(80*81*82) = rad(2^5*3^4*5*41) = 2*3*5*41 = 1230 < 6557 = 79*83, so 79 is a member of this sequence.
MAPLE
rad:= n -> convert(numtheory:-factorset(n), `*`):
select(p -> isprime(p) and isprime(p+4) and rad((p+1)*(p+2)*(p+3)) < p*(p+4), [seq(i, i=7..10^7, 6)]); # Robert Israel, Feb 05 2016
MATHEMATICA
p4Q[n_]:=PrimeQ[n+4]&&Select[Divisors[Times@@(n+{1, 2, 3})], SquareFreeQ][[-1]]<(n(n+4)); Select[Prime[Range[300000]], p4Q] (* Harvey P. Dale, Jul 25 2020 *)
PROG
(PARI) rad(n)=factorback(factor(n)[, 1])
has(p, q)=if(q-p!=4, return(0)); my(t=rad((p+1)/2)*rad((p+3)/2), pq=p*q); 3*t<pq && rad(p+2)*t<pq
p=2; forprime(q=3, 1e10, if(has(p, q), print1(p", ")); p=q)
CROSSREFS
Subsequence of A029710.
Sequence in context: A174878 A177198 A177163 * A061521 A362246 A073220
KEYWORD
nonn
AUTHOR
STATUS
approved