OFFSET
1,1
COMMENTS
Corresponding m's are: 6, 10, 14, 15, 17, 27, 30, 35, 37.
Of interest are sequences with values of k other than k = 10.
Apparently k may be of arbitrary value.
Smallest integers of the form (prime(m) + prime(m+1)/k for k = 1..20 are: 5, 4, 4, 2, 6, 2, 6, 1, 2, 3, 18, 1, 4, 3, 2, 7, 4, 1, 8, 3.
EXAMPLE
a(1) = 3: m = 6 and (prime(6) + prime(6))/10 = (13+17)/10 = 3,
a(2) = 6: m = 10 and (prime(10) + prime(11))/10 = (29+31)/10 = 6.
MATHEMATICA
Select[Table[(Prime[m] + Prime[m + 1])/10, {m, 250}], IntegerQ] (* Alonso del Arte, Feb 03 2016 *)
PROG
(PARI) lista(nn) = {for(n=1, nn, if((prime(n) + prime(n+1)) % 10 == 0, print1((prime(n) + prime(n+1)) / 10, ", "))); } \\ Altug Alkan, Feb 04 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Feb 01 2016
STATUS
approved