login
A268217
Triangle read by rows: T(n,k) (n>=3, k=3..n+1) is the number of topologies t on n points having exactly k open sets such that t contains exactly one open set of size m for each m in {0,2,3,4,...,s,n} where s is the size of the largest proper open set in t.
6
3, 6, 12, 10, 30, 60, 15, 60, 180, 360, 21, 105, 420, 1260, 2520, 28, 168, 840, 3360, 10080, 20160, 36, 252, 1512, 7560, 30240, 90720, 181440, 45, 360, 2880, 20160, 120960, 483840, 1451520, 2903040
OFFSET
3,1
COMMENTS
When two leading 0's are added and last element repeated, rows give the coefficients of the path polynomials of the complete graph K_n. - Eric W. Weisstein, Jun 04 2017
LINKS
G. A. Kamel, Partial Chain Topologies on Finite Sets, Computational and Applied Mathematics Journal. Vol. 1, No. 4, 2015, pp. 174-179.
Eric Weisstein's World of Mathematics, Complete Graph
Eric Weisstein's World of Mathematics, Graph Path
EXAMPLE
Triangle begins:
3;
6, 12;
10, 30, 60;
15, 60, 180, 360;
21, 105, 420, 1260, 2520;
28, 168, 840, 3360, 10080, 20160;
36, 252, 1512, 7560, 30240, 90720, 181440;
45, 360, 2880, 20160, 120960, 483840, 1451520, 2903040;
...
MATHEMATICA
i = 2; Table[Table[Binomial[n, i] FactorialPower[n - i, k], {k, 0, n - i - 1}], {n, 2, 9}] // Grid (* Geoffrey Critzer, Feb 19 2017 *)
CoefficientList[Table[-(1/2) (n - 1) n x^(n - 2) (Gamma[n - 1] - E^(1/x) Gamma[n - 1, 1/x]), {n, 3, 10}] // FunctionExpand, x] // Flatten (* Eric W. Weisstein, Jun 04 2017 *)
CROSSREFS
Row sums give A038158.
Triangles in this series: A268216, A268217, A268221, A268222, A268223.
Cf. A282507.
Sequence in context: A342786 A293474 A308727 * A254793 A353715 A182633
KEYWORD
nonn,tabl,more
AUTHOR
N. J. A. Sloane, Jan 29 2016
EXTENSIONS
Title clarified by Geoffrey Critzer, Feb 19 2017
STATUS
approved