login
Primes p of the form 2^k + 1 such that p - k is a prime q (for k >= 0).
1

%I #13 Sep 08 2022 08:46:15

%S 2,3,5,17,65537

%N Primes p of the form 2^k + 1 such that p - k is a prime q (for k >= 0).

%C Intersection of A092506 and A268209.

%C Sequence is not the same as A004249 because A004249(5) is a composite number.

%C Corresponding values of numbers k: 0, 1, 2, 4, 16; corresponding values of primes q: 2, 2, 3, 13, 65521.

%C 4 out of 5 known Fermat primes from A019434 (3, 5, 17, 65537) are terms.

%e Prime 17 = 2^4 + 1 is a term because 17 - 4 = 13 (prime).

%e 257 = 2^8 + 1 is not a term because 257 - 8 = 249 (composite number).

%t 2^# + 1 &@ Select[Range[0, 600], PrimeQ[2^# + 1] && PrimeQ[2^# - # + 1] &] (* _Michael De Vlieger_, Jan 29 2016 *)

%o (Magma) [2^k + 1: k in [0..60] | IsPrime(2^k + 1) and IsPrime(2^k - k + 1)]

%Y Cf. A004249, A019434, A092506, A100361, A100362, A268209.

%K nonn

%O 1,1

%A _Jaroslav Krizek_, Jan 28 2016