login
A268148
A double binomial sum involving absolute values.
5
0, 8, 768, 30720, 917504, 23592960, 553648128, 12213813248, 257698037760, 5257039970304, 104453604638720, 2031897488130048, 38843546786070528, 731834939447705600, 13618885273168379904, 250760427251989217280, 4574792530279968800768, 82788987402808467652608
OFFSET
0,2
COMMENTS
A fast algorithm follows from Theorem 5 of Brent et al. article.
LINKS
Richard P. Brent, Hideyuki Ohtsuka, Judy-anne H. Osborn, Helmut Prodinger, Some binomial sums involving absolute values, arXiv:1411.1477v2 [math.CO], 2016.
FORMULA
a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k^2 - l^2)^2).
From Colin Barker, Feb 11 2016: (Start)
a(n) = 2^(4*n-1)*n*(2*n-1).
a(n) = 48*a(n-1)-768*a(n-2)+4096*a(n-3) for n>2.
G.f.: 8*x*(1+48*x) / (1-16*x)^3.
(End)
PROG
(PARI) a(n) = sum(k=-n, n, sum(l=-n, n, binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k^2 - l^2)^2));
(PARI) concat(0, Vec(8*x*(1+48*x)/(1-16*x)^3 + O(x^20))) \\ Colin Barker, Feb 11 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard P. Brent, Jan 27 2016
STATUS
approved