login
A268079
T(n,k)=Number of nXk nonnegative integer arrays with new values introduced in each row and column in sequential order starting with zero.
6
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 18, 8, 1, 1, 16, 86, 86, 16, 1, 1, 32, 422, 1094, 422, 32, 1, 1, 64, 2094, 15106, 15106, 2094, 64, 1, 1, 128, 10438, 216734, 637358, 216734, 10438, 128, 1, 1, 256, 52126, 3168306, 29309170, 29309170, 3168306, 52126, 256, 1, 1, 512
OFFSET
1,5
COMMENTS
Table starts
.1...1......1.........1.............1.................1.....................1
.1...2......4.........8............16................32....................64
.1...4.....18........86...........422..............2094.................10438
.1...8.....86......1094.........15106............216734...............3168306
.1..16....422.....15106........637358..........29309170............1412290158
.1..32...2094....216734......29309170........4617638834..........795460720710
.1..64..10438...3168306....1412290158......795460720710.......517992936833258
.1.128..52126..46777214...69903748498...144635795908942....369867566612849678
.1.256.260502.694585586.3516426536462.27199854725237562.280350778114908738774
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1)
k=3: a(n) = 7*a(n-1) -10*a(n-2)
k=4: a(n) = 36*a(n-1) -463*a(n-2) +2640*a(n-3) -6700*a(n-4) +6000*a(n-5)
k=5: [order 14]
k=6: [order 45]
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..1..0..1....0..0..0..0....0..1..0..1....0..1..1..0....0..0..1..0
..0..1..1..1....0..1..1..1....0..0..1..2....0..0..1..0....0..0..1..1
..0..0..1..2....0..1..2..1....0..1..1..0....0..1..0..0....0..0..0..1
CROSSREFS
Column 2 is A000079(n-1).
Column 3 is A082685(n-1).
Sequence in context: A331406 A034372 A268056 * A202549 A155971 A176480
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 25 2016
STATUS
approved