login
A267984
Numbers congruent to {17, 23} mod 30.
3
17, 23, 47, 53, 77, 83, 107, 113, 137, 143, 167, 173, 197, 203, 227, 233, 257, 263, 287, 293, 317, 323, 347, 353, 377, 383, 407, 413, 437, 443, 467, 473, 497, 503, 527, 533, 557, 563, 587, 593, 617, 623, 647, 653, 677, 683, 707, 713, 737, 743, 767, 773
OFFSET
1,1
COMMENTS
Union of A128468 and A128473.
For all k >= 1 the numbers 2^k + a(n) and a(n)*2^k + 1 do not form a pair of primes, where n is any positive integer.
FORMULA
a(n) = a(n-1) + a(n-2) - a(n-3), n >= 4.
G.f.: x*(17 + 6*x + 7*x^2)/((1 + x)*(1 - x)^2).
a(n) = a(n-2) + 30.
a(n) = 10*(3*n - 2) - a(n-1).
From Colin Barker, Jan 24 2016: (Start)
a(n) = (30*n - 9*(-1)^n - 5)/2 for n>0.
a(n) = 15*n - 7 for n>0 and even.
a(n) = 15*n + 2 for n odd.
(End)
E.g.f.: 7 + ((30*x - 5)*exp(x) - 9*exp(-x))/2. - David Lovler, Sep 10 2022
MATHEMATICA
LinearRecurrence[{1, 1, -1}, {17, 23, 47}, 52]
PROG
(Magma) [n: n in [0..773] | n mod 30 in {17, 23}];
(PARI) Vec(x*(17 + 6*x + 7*x^2)/((1 + x)*(1 - x)^2) + O(x^53))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved