The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A267959 Triangle read by rows: T(n,k) = 1 if the generalized binomial coefficient (n,k)_f is integral for every multiplicative function f; otherwise T(n,k) = 0. 1
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0 COMMENTS For 0<=k<=n, we define (n,k)_f := Product_{i=1..n}f(i)/(Product_{i=1..k}f(i) * Product_{i=1..n-k}f(i)). T(n,k) = 1 if and only if for every prime p<=n there exists an index s_p>=0 such that e(n,n-k,i,p) = 1 for all 0<= i < s_p and e(n,n-k,i,p) = 0 for all i >= s_p where e(n,n-k,i,p) represents the value of the carry in the i-th position when adding the base-p representations of n and n-k (See Corollary 12 in Edgar-Spivey reference). T(n,0) = 1 and T(n,1) = 1 for all n. T(n,2) = 1 if and only if n == 2 (mod 4) or n == 3 (mod 4). LINKS Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6. Tom Edgar, Triangular array image. This image is Figure 1 in Edgar-Spivey reference; it shows rows 0-90 of the triangle with shaded entries corresponding to 1 and other entries corresponding to 0. PROG (Sage) def carry_sequence(n, k, p):     M=(n-k).digits(base=p)     K=k.digits(base=p)     mm=max(len(K), len(M))     M=M+(mm-len(M)+1)*[0]     K=K+(mm-len(K)+1)*[0]     CS=[floor((M[0]+K[0])/p)]     for i in [1..mm]:         CS.append(floor((M[i]+K[i]+CS[i-1])/p))     return CS def checkcarrysequence(n, k, p):     CS=carry_sequence(n, k, p)     if 0 in CS:         T=CS[CS.index(0):]         if T==len(T)*[0]:             return true         else:             return false     else:         return true def T(n, k):     flag=true     for x in prime_range(n+1):         if not(checkcarrysequence(n, k, x)):             flag=false     return Integer(flag) T=[[T(i, j) for j in [0..i]] for i in [0..20]] [x for sublist in T for x in sublist] CROSSREFS Sequence in context: A105567 A114213 A108358 * A144384 A144475 A011758 Adjacent sequences:  A267956 A267957 A267958 * A267960 A267961 A267962 KEYWORD nonn,tabl AUTHOR Tom Edgar and Michael Z. Spivey, Jan 22 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 09:05 EST 2020. Contains 338921 sequences. (Running on oeis4.)