%I
%S 1,2,4,11,29,77,201,525,1361,3525,9097,23453,60353,155189,398649,
%T 1023501,2626289,6736677,17274601,44286845,113516321,290925845,
%U 745515417,1910267373,4894426193,12539689989,32125783369,82301320541,210838008449
%N Number of 1 X n 0..2 arrays with every repeated value in every row unequal to the previous repeated value, and in every column equal to the previous repeated value, and new values introduced in rowmajor sequential order.
%C Row 1 of A267911.
%H R. H. Hardin, <a href="/A267912/b267912.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n1) + 2*a(n2)  8*a(n3) for n>5.
%F Conjectures from _Colin Barker_, Feb 25 2018: (Start)
%F G.f.: x*(1  x  4*x^2 + 3*x^3 + 4*x^4) / ((1  2*x)*(1  x  4*x^2)).
%F a(n) = (1/17)*2^(5n)*(17*4^(1+n) + (8519*sqrt(17))*(1sqrt(17))^n + (1+sqrt(17))^n*(85+19*sqrt(17))) for n>2.
%F (End)
%e Some solutions for n=8:
%e ..0..1..1..2..0..1..2..0....0..1..2..0..2..0..1..0....0..1..2..0..0..1..0..2
%Y Cf. A267911.
%K nonn
%O 1,2
%A _R. H. Hardin_, Jan 22 2016
