login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A267896 a(n) = (Prime(n+1)^2 - Prime(n)^2) / 8. 1
2, 3, 9, 6, 15, 9, 21, 39, 15, 51, 39, 21, 45, 75, 84, 30, 96, 69, 36, 114, 81, 129, 186, 99, 51, 105, 54, 111, 420, 129, 201, 69, 360, 75, 231, 240, 165, 255, 264, 90, 465, 96, 195, 99, 615, 651, 225, 114, 231, 354, 120, 615, 381, 390, 399, 135, 411, 279 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

LINKS

Robert Israel, Table of n, a(n) for n = 2..10000

FORMULA

a(n) = A024675(n) * A028334(n) / 2.

a(n) = (A000040(n+1)^2 - A000040(n)^2) / 8.

a(n) = A069482(n) / 8.

MAPLE

seq((ithprime(n+1)^2 - ithprime(n)^2)/8, n=2..100); # Robert Israel, Jan 22 2016

MATHEMATICA

Rest[Array[(Prime[# + 1]^2 - Prime[#]^2) / 8 &, 60]] (* Vincenzo Librandi, Jan 23 2016 *)

PROG

(PARI) a(n) = (prime(n+1)^2 - prime(n)^2)/8; \\ Michel Marcus, Jan 22 2016

(MAGMA) [(NthPrime(n+1)^2-NthPrime(n)^2) div 8: n in [2..60]]; // Vincenzo Librandi, Jan 23 2016

CROSSREFS

Cf. A069482, A028334, A024675, A000040.

Sequence in context: A224519 A288842 A108694 * A199858 A199963 A016634

Adjacent sequences:  A267893 A267894 A267895 * A267897 A267898 A267899

KEYWORD

nonn

AUTHOR

Franklin T. Adams-Watters, Jan 22 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 16:24 EST 2019. Contains 329808 sequences. (Running on oeis4.)