

A267893


Numbers with 10 odd divisors.


8



405, 567, 810, 891, 1053, 1134, 1377, 1539, 1620, 1782, 1863, 1875, 2106, 2268, 2349, 2511, 2754, 2997, 3078, 3240, 3321, 3483, 3564, 3726, 3750, 3807, 4212, 4293, 4375, 4536, 4698, 4779, 4941, 5022, 5427, 5508, 5751, 5913, 5994, 6156, 6399, 6480, 6642, 6723, 6875, 6966, 7128, 7203, 7209, 7452, 7500, 7614, 7857, 8125
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Positive integers that have exactly 10 odd divisors.
Numbers n such that the symmetric representation of sigma(n) has 10 subparts.  Omar E. Pol, Dec 29 2016
Numbers that can be formed in exactly 9 ways by summing sequences of 2 or more consecutive positive integers.  Julie Jones, Aug 13 2018


LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..5000


FORMULA

A001227(a(n)) = 10.


MATHEMATICA

Select[Range@ 8125, Length@ Select[Divisors@ #, OddQ] == 10 &] (* Michael De Vlieger, Dec 30 2016 *)


PROG

(PARI) isok(n) = sumdiv(n, d, (d%2)) == 10; \\ after Michel Marcus
(GAP) A:=List([1..10000], n>DivisorsInt(n));; B:=List([1..Length(A)], i>Filtered(A[i], IsOddInt));;
a:=Filtered([1..Length(B)], i>Length(B[i])=10); # Muniru A Asiru, Aug 14 2018


CROSSREFS

Column 10 of A266531.
Cf. A001227, A038547, A237593, A279387.
Numbers with exactly k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, A230577, A267697, A267891, A267892, this sequence.
Sequence in context: A185638 A198536 A169904 * A151745 A204636 A224527
Adjacent sequences: A267890 A267891 A267892 * A267894 A267895 A267896


KEYWORD

nonn


AUTHOR

Omar E. Pol, Apr 03 2016


STATUS

approved



