

A267892


Numbers with 9 odd divisors.


8



225, 441, 450, 882, 900, 1089, 1225, 1521, 1764, 1800, 2178, 2450, 2601, 3025, 3042, 3249, 3528, 3600, 4225, 4356, 4761, 4900, 5202, 5929, 6050, 6084, 6498, 6561, 7056, 7200, 7225, 7569, 8281, 8450, 8649, 8712, 9025, 9522, 9800, 10404, 11858, 12100, 12168, 12321, 12996, 13122, 13225, 14112, 14161, 14400, 14450, 15129
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Positive integers that have exactly nine odd divisors.
Numbers n such that the symmetric representation of sigma(n) has 9 subparts.  Omar E. Pol, Dec 29 2016
From Robert Israel, Dec 29 2016: (Start)
Numbers n such that A000265(n) is in A030627.
Numbers of the form 2^j*p^8 or 2^j*p^2*q^2 where p and q are distinct odd primes. (End)
Numbers that can be formed in exactly 8 ways by summing sequences of 2 or more consecutive positive integers.  Julie Jones, Aug 13 2018


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000


FORMULA

A001227(a(n)) = 9.


MAPLE

N:= 10^5: # to get all terms <= N
P:= select(isprime, [seq(i, i=3..floor(sqrt(N)/2), 2)]);
Aodd:= select(`<=`, map(t > t^8, P) union {seq(seq(P[i]^2*P[j]^2, i=1..j1), j=1..nops(P))}, N):
A:= map(t > seq(2^j*t, j=0..ilog2(N/t)), Aodd):
sort(convert(A, list)); # Robert Israel, Dec 29 2016


MATHEMATICA

Select[Range[5^6], Length[Divisors@ # /. d_ /; EvenQ@ d > Nothing] == 9 &] (* Michael De Vlieger, Apr 04 2016 *)


PROG

(PARI) isok(n) = sumdiv(n, d, (d%2)) == 9; \\ after Michel Marcus.
(GAP) A:=List([1..16000], n>DivisorsInt(n));; B:=List([1..Length(A)], i>Filtered(A[i], IsOddInt));;
a:=Filtered([1..Length(B)], i>Length(B[i])=9); # Muniru A Asiru, Aug 14 2018


CROSSREFS

Column 9 of A266531.
Cf. A001227, A038547, A237593, A279387.
Numbers with exactly k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, A230577, A267697, A267891, this sequence, A267893.
Cf. A000265, A030627.
Sequence in context: A207639 A077347 A207640 * A216419 A246199 A147276
Adjacent sequences: A267889 A267890 A267891 * A267893 A267894 A267895


KEYWORD

nonn


AUTHOR

Omar E. Pol, Apr 03 2016


STATUS

approved



