login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A267861 Number of ways to write n as 2*t + u^4 + v^4 + 2*w^4 + 3*x^4 + 4*y^4 + 6*z^4, where t is 0 or 1,  and u, v, w, x, y, z are nonnegative integers with u <= v and v > 0. 2
1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 5, 5, 5, 4, 3, 4, 3, 3, 4, 3, 4, 5, 5, 5, 6, 5, 5, 5, 4, 3, 3, 3, 2, 4, 2, 4, 4, 5, 5, 6, 5, 5, 6, 4, 4, 3, 3, 2, 4, 2, 4, 4, 4, 5, 6, 5, 6, 6, 4, 4, 4, 3, 2, 4, 2, 4, 5, 6, 5, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 1, 2, 111, 127, 143, 158, 221, 223, 240, 460, 463, 480, 545, 560, 561, 1455, 1695, 1776, 2175. Moreover, any integer n > 10^4 not among 10543, 17935, 37583, 40383, 78543 can be written as u^4 + v^4 + 2*w^4 + 3*x^4 + 4*y^4 + 6*z^4 with u,v,w,x,y,z nonnegative integers.

If a(1),...,a(7) are positive integers with a(1) <= a(2) <= ... <= a(7) and a(1)+...+a(7) = g(4) = 19 such that {a(1)*x(1)^4+...+a(7)*x(7)^4: x(1),...,x(7) = 0,1,2,...} = {0,1,2,...}, then the tuple (a(1),...,a(7)) must be (1,1,2,2,3,4,6) or (1,1,2,2,3,3,7). Similarly, if a(1),...,a(8) are positive integers with a(1) <= a(2) <= ... <= a(8) and a(1)+...+a(8) = g(5) = 37 such that {a(1)*x(1)^5+...+a(8)*x(8)^5: x(1),...,x(8) = 0,1,2,...} = {0,1,2,...}, then (a(1),...,a(8)) must be (1,1,2,3,4,6,8,12) or (1,1,2,3,4,5,7,14).

LINKS

Zhi-Wei Sun, Table of n, a(n) for n = 1..10000

Zhi-Wei Sun, Upgrade Waring's Problem, a message to Number Theory Mailing List, April 2, 2016.

Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.

EXAMPLE

a(111) = 1 since 111 = 2*1 + 2^4 + 3^4 + 2*1^4 + 3*0^4 + 4*1^4 + 6*1^4.

a(240) = 1 since 240 = 2*0 + 2^4 + 2^4 + 2*0^4 + 3*2^4 + 4*2^4 + 6*2^4.

a(1776) = 1 since 1776 = 2*0 + 4^4 + 5^4 + 2*3^4 + 3*3^4 + 4*1^4 + 6*3^4.

a(2175) = 1 since 2175 = 2*1 + 0^4 + 4^4 + 2*2^4 + 3*5^4 + 4*1^4 + 6*1^4.

MATHEMATICA

QQ[n_]:=QQ[n]=n>0&&IntegerQ[n^(1/4)]

Do[r=0; Do[If[QQ[n-2t-6*z^4-4y^4-3x^4-2w^4-u^4], r=r+1], {t, 0, Min[1, n/2]}, {z, 0, ((n-2t^8)/6)^(1/4)}, {y, 0, ((n-2t-6z^4)/4)^(1/4)}, {x, 0, ((n-2t-6z^4-4y^4)/3)^(1/4)},

{w, 0, ((n-2t-6z^4-4y^4-3x^4)/2)^(1/4)}, {u, 0, ((n-2t-6z^4-4y^4-3x^4-2w^4)/2)^(1/4)}]; Print[n, " ", r]; Continue, {n, 1, 70}]

CROSSREFS

Cf. A000583, A000584, A002804, A267826, A271099, A271169, A271237.

Sequence in context: A196155 A140858 A075458 * A253548 A083036 A241920

Adjacent sequences:  A267858 A267859 A267860 * A267862 A267863 A267864

KEYWORD

nonn

AUTHOR

Zhi-Wei Sun, Apr 07 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 12:33 EDT 2019. Contains 323422 sequences. (Running on oeis4.)