OFFSET
0,2
COMMENTS
(m^k-1)/11 is a nonnegative integer when
. m is a member of this sequence and k is an odd multiple of 5 (A017329),
apart from the trivial case in which k=0.
Also, numbers that are congruent to {1, 3, 4, 5, 9} mod 11. Therefore, the product of two terms belongs to the sequence.
a(n) is prime for n = 1, 3, 10, 14, 17, 21, 24, 27, 30, 33, 40, 44, 47, ...
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
FORMULA
G.f.: (1 + 2*x + x^2 + x^3 + 4*x^4 + 2*x^5)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6).
a(-n) = -A267541(n-1).
a(n) = n + 1 + 2*floor(n/5) + 3*floor((n+1)/5) + floor((n+4)/5). - Ridouane Oudra, Sep 06 2023
EXAMPLE
MAPLE
gf := (1 + 2*x + x^2 + x^3 + 4*x^4 + 2*x^5)/(1 - x - x^5 + x^6): deg := 64: series(gf, x, deg): seq(coeff(%, x, n), n=0..deg-1); # Peter Luschny, Jan 21 2016
MATHEMATICA
CoefficientList[Series[(1 + 2 x + x^2 + x^3 + 4 x^4 + 2 x^5)/(1 - x - x^5 + x^6), {x, 0, 70}], x]
LinearRecurrence[{1, 0, 0, 0, 1, -1}, {1, 3, 4, 5, 9, 12}, 70]
Select[Range[140], MemberQ[{1, 3, 4, 5, 9}, Mod[#, 11]]&]
PROG
(PARI) Vec((1+2*x+x^2+x^3+4*x^4+2*x^5)/(1-x-x^5+x^6)+O(x^70))
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+x^2+x^3+4*x^4+2*x^5)/(1-x-x^5+x^6)));
(Sage)
gf = (1 + 2*x + x^2 + x^3 + 4*x^4 + 2*x^5)/(1 - x - x^5 + x^6)
print(taylor(gf, x, 0, 63).list()) # Peter Luschny, Jan 21 2016
(Magma) I:=[1, 3, 4, 5, 9, 12]; [n le 6 select I[n] else Self(n-1)+Self(n-5)-Self(n-6): n in [1..70]]; // Vincenzo Librandi, Jan 21 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jan 20 2016
STATUS
approved