login
A267655
T(n,k)=Number of nXk arrays containing k copies of 0..n-1 with every element equal to or 1 greater than any north or southwest neighbors modulo n and the upper left element equal to 0.
5
1, 1, 1, 1, 3, 1, 1, 10, 4, 1, 1, 35, 17, 3, 1, 1, 126, 66, 23, 3, 1, 1, 462, 324, 123, 21, 3, 1, 1, 1716, 1565, 657, 221, 17, 3, 1, 1, 6435, 7908, 4765, 1811, 268, 17, 3, 1, 1, 24310, 41440, 36055, 13359, 4585, 203, 17, 3, 1, 1, 92378, 219394, 256836, 129319, 55105, 7672, 167
OFFSET
1,5
COMMENTS
Table starts
.1.1..1...1....1......1.........1..........1...........1...........1
.1.3.10..35..126....462......1716.......6435.......24310.......92378
.1.4.17..66..324...1565......7908......41440......219394.....1181538
.1.3.23.123..657...4765.....36055.....256836.....1888443....14723754
.1.3.21.221.1811..13359....129319....1586523....18730678...199349073
.1.3.17.268.4585..55105....569689....7128794...126811891..2572337388
.1.3.17.203.7672.201362...3562990...52241496...855234512.19809675462
.1.3.17.167.7145.467919..18784855..491779927.10416831490
.1.3.17.167.5356.608250..61856471.3779928997
.1.3.17.167.4640.513398.115115782
Empirical: column k descends to a constant at n=2k, the final constant for k=1..7 being 1 3 17 167 4640 348814 77196948
LINKS
EXAMPLE
Some solutions for n=6 k=4
..0..0..2..3....0..1..2..3....0..1..2..4....0..2..3..5....0..2..2..4
..0..1..2..4....1..1..2..4....0..1..3..5....1..2..4..5....1..2..3..5
..0..1..3..5....1..2..3..5....1..2..4..5....2..3..4..0....1..3..4..5
..1..2..4..5....2..3..4..0....2..3..4..5....2..3..5..0....2..3..5..0
..1..3..4..5....3..4..5..0....2..3..5..0....3..4..0..1....3..4..0..1
..2..3..4..5....4..5..5..0....3..4..0..1....4..5..1..1....4..5..0..1
CROSSREFS
Row 2 is A001700(n-1).
Row 3 is A266862.
Sequence in context: A267553 A268115 A106268 * A263864 A060543 A267751
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 19 2016
STATUS
approved