login
A267550
Primes p such that p (mod 3) = p (mod 5) = p (mod 7).
1
2, 107, 211, 317, 421, 631, 947, 1051, 1367, 1471, 1787, 1997, 2207, 2311, 2417, 2521, 2731, 2837, 3257, 3361, 3467, 3571, 3677, 4201, 4517, 4621, 4831, 4937, 5147, 5881, 5987, 6091, 6197, 6301, 6827, 7247, 7351, 7457, 7561, 7877, 8087, 8191, 8297, 8821, 9137, 9241, 9661, 9767, 9871, 10501
OFFSET
1,1
COMMENTS
Or primes p such that p (mod 105) = {1, 2}.
In terms a(4227)...a(4246) their terminal digits alternate: 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7.
LINKS
MATHEMATICA
Select[ Prime[ Range[10000]], (Mod[#, 3] == Mod[#, 5] == Mod[#, 7]) &](*Or*)
Select[ Prime[ Range[10000]], 0 < Mod[#, 105] < 3 &]
Select[Prime[Range[10000]], Length[Union[Mod[#, {3, 5, 7}]]]==1&] (* Harvey P. Dale, Oct 11 2019 *)
PROG
(Magma) [p: p in PrimesUpTo(10000) | p mod 3 eq p mod 5 and p mod 5 eq p mod 7]; // Vincenzo Librandi, Jan 17 2016
(PARI) lista(nn) = forprime(p=2, nn, if(p%3 == p%5 && p%5 == p%7, print1(p, ", "))); \\ Altug Alkan, Jan 25 2016
CROSSREFS
Sequence in context: A139887 A174409 A340054 * A224819 A156502 A111456
KEYWORD
nonn,easy
AUTHOR
Mikk Heidemaa, Jan 17 2016
EXTENSIONS
More terms from Vincenzo Librandi, Jan 17 2016
STATUS
approved