This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A267522 a(n) = 4*(n + 1)*(n + 2)*(4*n + 3)/3. 0
 8, 56, 176, 400, 760, 1288, 2016, 2976, 4200, 5720, 7568, 9776, 12376, 15400, 18880, 22848, 27336, 32376, 38000, 44240, 51128, 58696, 66976, 76000, 85800, 96408, 107856, 120176, 133400, 147560, 162688, 178816, 195976, 214200, 233520, 253968, 275576, 298376, 322400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Partial sums of A152750. LINKS Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA G.f.: 8*(1 + 3*x)/(1 - x)^4. E.g.f.: (4/3)*exp(x)*(6 + 36*x + 27*x^2 + 4*x^3). a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). a(n) = 4*A268684(n + 1). Sum_{n>=0} 1/a(n) = -3*(2*Pi - 12*log(2) + 1)/20 = 0.15518712893... EXAMPLE a(0) = (0 + 2)*(1 + 3) = 8; a(1) = (0 + 2)*(1 + 3) + (2 + 4)*(3 + 5) = 56; a(2) = (0 + 2)*(1 + 3) + (2 + 4)*(3 + 5) + (4 + 6)*(5 + 7) = 176; a(3) = (0 + 2)*(1 + 3) + (2 + 4)*(3 + 5) + (4 + 6)*(5 + 7) + (6 + 8)*(7 + 9) = 400, etc MATHEMATICA Table[(4 (n + 1)) (n + 2) ((4 n + 3)/3), {n, 0, 38}] LinearRecurrence[{4, -6, 4, -1}, {8, 56, 176, 400}, 39] PROG (PARI) a(n) = 4*(n + 1)*(n + 2)*(4*n + 3)/3; \\ Michel Marcus, Apr 10 2016 (PARI) x='x+O('x^99); Vec(8*(1+3*x)/(1-x)^4) \\ Altug Alkan, Apr 10 2016 CROSSREFS Cf. A152750, A268684. Sequence in context: A044146 A118772 A212817 * A073831 A168013 A003210 Adjacent sequences:  A267519 A267520 A267521 * A267523 A267524 A267525 KEYWORD nonn,easy AUTHOR Ilya Gutkovskiy, Apr 09 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 10:05 EDT 2019. Contains 328146 sequences. (Running on oeis4.)