This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A267515 Decimal representation of the middle column of the "Rule 137" elementary cellular automaton starting with a single ON (black) cell. 2
 1, 2, 5, 10, 21, 42, 84, 169, 338, 677, 1354, 2709, 5418, 10836, 21673, 43346, 86693, 173386, 346773, 693546, 1387092, 2774185, 5548370, 11096741, 22193482, 44386965, 88773930, 177547860, 355095721, 710191442, 1420382885, 2840765770, 5681531541, 11363063082 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55. LINKS Robert Price, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Elementary Cellular Automaton S. Wolfram, A New Kind of Science FORMULA [Incorrect] conjectures from Colin Barker, Jan 16 2016: (Start) a(n) = 2*a(n-1)+a(n-7)-2*a(n-8) for n>7. [Wrong] G.f.: (1-x+x^2)*(1+x+x^2) / ((1-x)*(1-2*x)*(1+x+x^2+x^3+x^4+x^5+x^6)). [Wrong] (End) The linear recurrence and g.f. are invalid and start to generate erroneous values at a(62). - R. J. Mathar, Apr 12 2019 MAPLE # Rule 137: value in generation r and column c, where c=0 is the central one r137 := proc(r::integer, c::integer)     option remember;     local up ;     if r = 0 then         if c = 0 then             1;         else             0;         end if;     else         # previous 3 bits         [procname(r-1, c+1), procname(r-1, c), procname(r-1, c-1)] ;         up := op(3, %)+2*op(2, %)+4*op(1, %) ;         # rule 137 = 10001001_2: 7->1, {6, 5, 4}->0, 3->1, {2, 1}->0, 0->1         if up in {7, 3, 0} then             1;         else             0 ;         end if;     end if; end proc: A267515 := proc(n)     b := [seq(r137(r, 0), r=0..n)] ;     add(2^(i-1)*op(-i, b), i=1..nops(b)) ; end proc: [seq(A267515(n), n=0..62)] ; # R. J. Mathar, Apr 12 2019 MATHEMATICA rule=137; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]], {k, 1, rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc, k], 2], {k, 1, rows}]  (* Binary Representation of Middle Column *) CROSSREFS Cf. A267463, A267514. Sequence in context: A261681 A030525 A116385 * A215411 A243988 A279811 Adjacent sequences:  A267512 A267513 A267514 * A267516 A267517 A267518 KEYWORD nonn,easy AUTHOR Robert Price, Jan 16 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 06:25 EDT 2019. Contains 326139 sequences. (Running on oeis4.)