login
A267439
Indices of (Abatzoglou-Silverberg-Sutherland-Wong) primes in A267437.
3
2, 3, 4, 5, 7, 9, 10, 17, 18, 28, 38, 49, 53, 60, 63, 65, 77, 84, 87, 100, 109, 147, 170, 213, 235, 287, 319, 375, 467, 489, 494, 543, 643, 684, 725, 1129, 1428, 2259, 2734, 2828, 3148, 3230, 3779, 5537, 5759, 7069, 7189, 7540, 7729
OFFSET
1,1
REFERENCES
Alexander Abatzoglou, Alice Silverberg, Andrew V. Sutherland, and Angela Wong, Deterministic elliptic curve primality proving for a special sequence of numbers, Tenth Algorithmic Number Theory Symposium (ANTS X, 2012), pp. 1-20.
MATHEMATICA
s = RecurrenceTable[{a[n] == 4 a[n - 1] - 7 a[n - 2] + 8 a[n - 3] - 4 a[n - 4], a[2] == 11, a[3] == 23, a[4] == 67, a[5] == 151}, a, {n, 2, 4000}]; Flatten@ Position[s, _Integer?PrimeQ] + 1 (* Michael De Vlieger, Jan 24 2016 *)
PROG
(PARI) A267437(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -4, 8, -7, 4]^n*[9; 11; 11; 23])[1, 1]
list(lim)=my(v=List()); for(n=2, lim, if(ispseudoprime(A267437(n)), listput(v, n))); Vec(v)
(PARI) See Greathouse link.
CROSSREFS
Sequence in context: A055600 A139528 A178434 * A262691 A117290 A286972
KEYWORD
nonn
AUTHOR
STATUS
approved