login
A267390
Number of acyclic orientations of the Turán graph T(n,10).
2
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 36288000, 402796800, 4906137600, 64988179200, 929459059200, 14266826784000, 233845982899200, 4075249496774400, 75225258805132800, 1465957162768492800, 28530213421847558400, 586170618419794464000
OFFSET
0,3
COMMENTS
An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.
LINKS
Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
Wikipedia, Turán graph
FORMULA
a(n) ~ n! / (9 * (1 - log(10/9))^(9/2) * 10^n * (log(10/9))^(n+1)). - Vaclav Kotesovec, Feb 18 2017
CROSSREFS
Column k=10 of A267383.
Sequence in context: A173850 A154658 A179369 * A360463 A193937 A072167
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 13 2016
STATUS
approved