login
A267376
First differences of A267374.
2
3, 2, 3, 4, 3, 2, 2, 3, 2, 3, 3, 2, 4, 3, 2, 3, 5, 3, 2, 3, 4, 2, 3, 2, 3, 4, 3, 3, 2, 3, 4, 4, 3, 2, 3, 4, 3, 2, 2, 3, 2, 3, 4, 3, 2, 3, 3, 2, 3, 4, 3, 2, 2, 3, 2, 3, 3, 2, 3, 2, 3, 4, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 4, 3, 2, 2, 3, 2, 3, 3, 2, 5, 3, 2, 3, 4, 3, 2, 2, 3, 2, 3, 3, 2, 4, 2, 3, 2, 3, 4, 3, 2, 2, 3, 2, 3, 3, 2, 4, 3, 3, 2, 3, 4, 3, 2, 2, 3, 2, 3, 3, 2, 4, 4, 3, 2, 3, 4, 3
OFFSET
1,1
EXAMPLE
The first two terms of A267374 are 2, 5 so the first term of this sequence is 3.
MATHEMATICA
(* Function a267374[] is defined in A267374 *)
a267376[n_] := Module[{list=a267374[n]}, Rest[list]-Most[list]]
Take[a267376[20], 130] (* Hartmut F. W. Hoft, Mar 22 2024 *)
CROSSREFS
Sequence in context: A188723 A341890 A077178 * A267380 A217287 A322200
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Jan 13 2016
STATUS
approved