login
A267352
Number of ON (black) cells in the n-th iteration of the "Rule 123" elementary cellular automaton starting with a single ON (black) cell.
1
1, 2, 3, 6, 3, 10, 3, 14, 3, 18, 3, 22, 3, 26, 3, 30, 3, 34, 3, 38, 3, 42, 3, 46, 3, 50, 3, 54, 3, 58, 3, 62, 3, 66, 3, 70, 3, 74, 3, 78, 3, 82, 3, 86, 3, 90, 3, 94, 3, 98, 3, 102, 3, 106, 3, 110, 3, 114, 3, 118, 3, 122, 3, 126, 3, 130, 3, 134, 3, 138, 3
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 14 2016: (Start)
a(n) = 3*((-1)^n+1)/2-(-1)^n*n+n for n>0.
a(n) = 2*a(n-2)-a(n-4) for n>4.
G.f.: (1+2*x+x^2+2*x^3-2*x^4) / ((1-x)^2*(1+x)^2).
(End)
MATHEMATICA
rule=123; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[Total[catri[[k]]], {k, 1, rows}] (* Number of Black cells in stage n *)
CROSSREFS
Cf. A267349.
Sequence in context: A019773 A350728 A109536 * A101401 A106834 A191658
KEYWORD
nonn
AUTHOR
Robert Price, Jan 13 2016
STATUS
approved