This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A267325 Next n digits of sqrt(2). 1
 1, 41, 421, 3562, 37309, 504880, 1688724, 20969807, 856967187, 5376948073, 17667973799, 73247846210, 7038850387534, 32764157273501, 384623091229702, 4924836055850737, 21264412149709993, 583141322266592750, 5592755799950501152, 78206057147010955997 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS G. C. Greubel, Table of n, a(n) for n = 1..995 Eric Weisstein's World of Mathematics, Pythagoras's Constant FORMULA a(n) = floor(sqrt(2)*10^(n*(n + 1)/2 - 1)) mod (10^n). EXAMPLE a(2) = 41 because the second and third digits of sqrt(2) are 4 and 1. MATHEMATICA Table[Mod[Floor[Sqrt[2] 10^(n ((n + 1)/2) - 1)], 10^n], {n, 1, 20}] Table[Floor[10^(-1 + (n (1 + n))/2) Sqrt[2]] + Ceiling[-(Floor[10^(-1 + (n (1 + n))/2) Sqrt[2]]/10^n)] 10^n, {n, 1, 20}] With[{x=20}, FromDigits/@TakeList[RealDigits[Sqrt[2], 10, (x(x+1))/2] [[1]], Range[x]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 04 2019 *) PROG (MAGMA) [Floor(Sqrt(2)*10^(n*(n + 1)/2 - 1)) mod (10^n): n in [1..30]]; // Vincenzo Librandi, Feb 15 2016 (PARI) a(n) = lift(Mod(floor(sqrt(2)*10^(n*(n + 1)/2 - 1)), 10^n)); \\ G. C. Greubel, Oct 07 2018 CROSSREFS Cf. A002193, A081368, A090897, A093473. Sequence in context: A068849 A145293 A196807 * A083761 A209823 A196784 Adjacent sequences:  A267322 A267323 A267324 * A267326 A267327 A267328 KEYWORD nonn,easy,base AUTHOR Ilya Gutkovskiy, Jan 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 14:15 EST 2019. Contains 329806 sequences. (Running on oeis4.)