login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A267322 Expansion of (1 + x + x^2 + x^4 + 2*x^5)/(1 - x^3)^3. 1
1, 1, 1, 3, 4, 5, 6, 9, 12, 10, 16, 22, 15, 25, 35, 21, 36, 51, 28, 49, 70, 36, 64, 92, 45, 81, 117, 55, 100, 145, 66, 121, 176, 78, 144, 210, 91, 169, 247, 105, 196, 287, 120, 225, 330, 136, 256, 376, 153, 289, 425, 171, 324, 477, 190, 361, 532, 210, 400, 590, 231, 441, 651 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Triangular numbers alternating with squares and pentagonal numbers.

LINKS

Table of n, a(n) for n=0..62.

Ilya Gutkovskiy, Extended illustration of initial terms

Eric Weisstein's World of Mathematics, Triangular Number

Eric Weisstein's World of Mathematics, Square Number

Eric Weisstein's World of Mathematics, Pentagonal Number

Index entries for linear recurrences with constant coefficients, signature (0,0,3,0,0,-3,0,0,1)

FORMULA

G.f.: (1 + x + x^2 + x^4 + 2*x^5)/(1 - x^3)^3.

a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9).

a(3k) = A000217(k+1), a(3k+1) = A000290(k+1), a(3k+2) = A000326(k+1).

Sum_{n>=0} 1/a(n) = 2 - Pi/sqrt(3) + Pi^2/6 + 3*log(3) = 5.1269715686...

a(n) = (floor(n/3) + 1)*((n+1)*floor(n/3) - 3*floor(n/3)^2 + 2)/2. - Bruno Berselli, Apr 08 2016

EXAMPLE

Illustration of initial terms:

==========================================================

n:    0   1   2     3     4     5       6       7       8

----------------------------------------------------------

                                                        o

                                                      o o

                                o       o   o o o   o o o

                    o   o o   o o     o o   o o o   o o o

      o   o   o   o o   o o   o o   o o o   o o o   o o o

==========================================================

      1   1   1     3     4     5       6       9      12

----------------------------------------------------------

MATHEMATICA

LinearRecurrence[{0, 0, 3, 0, 0, -3, 0, 0, 1}, {1, 1, 1, 3, 4, 5, 6, 9, 12}, 70]

Table[(Floor[n/3] + 1) ((n + 1) Floor[n/3] - 3 Floor[n/3]^2 + 2)/2, {n, 0, 70}] (* Bruno Berselli, Apr 08 2016 *)

PROG

(PARI) x='x+O('x^99); Vec((1+x+x^2+x^4+2*x^5)/(1-x^3)^3) \\ Altug Alkan, Apr 07 2016

CROSSREFS

Cf. A000217, A000290, A000326, A123596, A124093, A271391.

Sequence in context: A047427 A228235 A228895 * A218929 A088875 A022884

Adjacent sequences:  A267319 A267320 A267321 * A267323 A267324 A267325

KEYWORD

nonn,easy

AUTHOR

Ilya Gutkovskiy, Apr 07 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 14:38 EST 2019. Contains 329865 sequences. (Running on oeis4.)