The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A267310 a(n) is the numerator of Sum_{d|n} sigma(n/d)^d/d, where sigma is A000203. 3
 1, 7, 13, 47, 31, 175, 57, 479, 310, 847, 133, 4799, 183, 737, 4513, 25023, 307, 32123, 381, 195887, 17803, 356671, 553, 1892351, 39656, 3192287, 807286, 12898415, 871, 6727787, 993, 109575039, 12603505, 258287671, 1630737, 502527043, 1407, 2324532815 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS If n is prime, a(n) = n^2 + n + 1. - Robert Israel, Feb 16 2016 LINKS Chai Wah Wu, Table of n, a(n) for n = 1..4191 EXAMPLE sigma(1)^6/6 + sigma(2)^3/3 + sigma(3)^2/2 + sigma(6)^1/1 = 1/6 + 9 + 8 + 12 = 175/6. a(6) = numerator(175/6) = 175. MAPLE a := proc (n) options operator, arrow; add(numtheory:-sigma(n/d)^d/d, d in numtheory:-divisors(n)) end proc: seq(numer(a(n)), n = 1 .. 100); MATHEMATICA Table[Numerator@ Sum[DivisorSigma[1, n/d]^d/d, {d, Divisors@ n}], {n, 38}] (* Michael De Vlieger, Feb 19 2016 *) PROG (PARI) a(n) = numerator(sumdiv(n, d, sigma(n/d)^d/d)); \\ Michel Marcus, Feb 19 2016 (Python) from __future__ import division from sympy import divisors, divisor_sigma, gcd def A267310(n):     m = sum(d*divisor_sigma(d)**(n//d)  for d in divisors(n, generator=True))     return m//gcd(m, n) # Chai Wah Wu, Oct 02 2017 CROSSREFS Cf. A000203, A268982, A268983. Sequence in context: A159305 A146648 A219501 * A153119 A134039 A166703 Adjacent sequences:  A267307 A267308 A267309 * A267311 A267312 A267313 KEYWORD nonn,frac AUTHOR Gevorg Hmayakyan, Feb 16 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 01:42 EST 2020. Contains 331328 sequences. (Running on oeis4.)