login
A267274
Decimal representation of the n-th iteration of the "Rule 117" elementary cellular automaton starting with a single ON (black) cell.
2
1, 3, 24, 31, 384, 511, 6144, 8191, 98304, 131071, 1572864, 2097151, 25165824, 33554431, 402653184, 536870911, 6442450944, 8589934591, 103079215104, 137438953471, 1649267441664, 2199023255551, 26388279066624, 35184372088831, 422212465065984, 562949953421311
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 14 2016 and Apr 19 2019: (Start)
a(n) = ((-4)^n+(-1)^n+2^(2*n+1)-1)/2 for n>1.
a(n) = 17*a(n-2)-16*a(n-4) for n>5.
G.f.: (1+3*x+7*x^2-20*x^3-8*x^4+32*x^5) / ((1-x)*(1+x)*(1-4*x)*(1+4*x)).
(End)
MATHEMATICA
rule=117; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]], 2], {k, 1, rows}] (* Decimal Representation of Rows *)
CROSSREFS
Sequence in context: A081312 A123598 A106217 * A217554 A278491 A363536
KEYWORD
nonn
AUTHOR
Robert Price, Jan 12 2016
EXTENSIONS
Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - Michael De Vlieger, Jun 13 2022
STATUS
approved