The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A267181 Array read by antidiagonals: T(i,j) (i>=0, j>=0) = number of steps to reach either top row or main diagonal using the steps (i,j)->(j,i) or (i,j)->(i,j-i). 8
 0, 1, 0, 1, 0, 0, 1, 2, 1, 0, 1, 3, 0, 2, 0, 1, 4, 4, 3, 3, 0, 1, 5, 2, 0, 1, 4, 0, 1, 6, 5, 5, 4, 4, 5, 0, 1, 7, 3, 6, 0, 5, 2, 6, 0, 1, 8, 6, 2, 6, 5, 1, 5, 7, 0, 1, 9, 4, 6, 4, 0, 3, 5, 3, 8, 0, 1, 10, 7, 7, 7, 7, 6, 6, 6, 6, 9, 0, 1, 11, 5, 3, 2, 7, 0, 6, 1, 2, 4, 10, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS We start at (i,j) and apply either (i,j) -> (j,i) if i>j or (i,j) -> (i,j-i) if j>i.  T(i,j) is the minimal number of steps to reach either (0,k) or (k,k) for some k. Somewhat analogous to the array in A072030 except that here the offset is different and we pay for transposition steps as well as subtraction steps. LINKS FORMULA Recurrence: T(0,k)=TR(k,k)=0; if i>j then T(i,j)=T(j,i)+1; if j>i then T(i,j)=T(i,j-i)+1. For a > 1 and b,k > 0, T(ak,k) = a, T(ak+b,k) = T(b,k) + a + 2, T(k,ak) = a - 1, T(k,ak+b) = T(k,b) + a. - Charlie Neder, Feb 08 2019 EXAMPLE Array begins: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... 1, 2, 0, 3, 1, 4, 2, 5, 3, 6, 4, 7, 5, ... 1, 3, 4, 0, 4, 5, 1, 5, 6, 2, 6, 7, 3, ... 1, 4, 2, 5, 0, 5, 3, 6, 1, 6, 4, 7, 2, ... 1, 5, 5, 6, 6, 0, 6, 6, 7, 7, 1, 7, 7, ... 1, 6, 3, 2, 4, 7, 0, 7, 4, 3, 5, 8, 1, ... 1, 7, 6, 6, 7, 7, 8, 0, 8, 7, 7, 8, 8, ... 1, 8, 4, 7, 2, 8, 5, 9, 0, 9, 5, 8, 3, ... 1, 9, 7, 3, 7, 8, 4, 8, 10, 0, 10, 8, 4, ... 1, 10, 5, 7, 5, 2, 6, 8, 6, 11, 0, 11, 6, ... 1, 11, 8, 8, 8, 8, 9, 9, 9, 9, 12, 0, 12, ... 1, 12, 6, 4, 3, 8, 2, 9, 4, 5, 7, 13, 0, ... ... The first few antidiagonals are: 0, 1, 0, 1, 0, 0, 1, 2, 1, 0, 1, 3, 0, 2, 0, 1, 4, 4, 3, 3, 0, 1, 5, 2, 0, 1, 4, 0, 1, 6, 5, 5, 4, 4, 5, 0, 1, 7, 3, 6, 0, 5, 2, 6, 0, 1, 8, 6, 2, 6, 5, 1, 5, 7, 0, 1, 9, 4, 6, 4, 0, 3, 5, 3, 8, 0, ... MAPLE M:=12; A:=Array(0..M, 0..M, 0); for k from 0 to M do A[0, k]:=0; A[k, k]:=0; od: # border number k # col k, row n for k from 1 to M do for n from 1 to k-1 do A[n, k]:=A[n, k-n]+1; od: # row k, col i for i from k-1 by -1 to 0 do A[k, i]:=A[i, k]+1; od: od: for n from 0 to M do lprint([seq(A[n, k], k=0..M)]); od: # square array for n from 0 to M do lprint([seq(A[n-j, j], j=0..n)]); od: # antidiagonals CROSSREFS Cf. A072030. For initial rows and columns see A267182-A267187. For the array read mod 2, see A267188. Sequence in context: A102761 A231119 A129558 * A131185 A307819 A286354 Adjacent sequences:  A267178 A267179 A267180 * A267182 A267183 A267184 KEYWORD nonn,tabl AUTHOR N. J. A. Sloane, Jan 16 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 07:55 EST 2022. Contains 350454 sequences. (Running on oeis4.)