login
A267174
Growth series for affine Coxeter group B_11.
1
1, 12, 77, 353, 1298, 4070, 11298, 28468, 66275, 144430, 297584, 584244, 1099814, 1995202, 3502797, 5972044, 9917336, 16081506, 25518845, 39702300, 60660325, 91149775, 134872255, 196742469, 283218364, 402704237, 566039474, 787087225, 1083439094, 1477253844, 1996250190, 2674875984, 3555678491, 4690903019, 6144349905, 7993522778
OFFSET
0,2
REFERENCES
N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
LINKS
Index entries for linear recurrences with constant coefficients, signature (8, -28, 55, -62, 27, 35, -82, 82, -35, -27, 62, -55, 29, -16, 29, -55, 63, -35, -6, 19, 9, -55, 82, -62, 0, 62, -82, 54, 0, -56, 98, -120, 126, -120, 98, -57, 8, 26, -27, -1, 35, -55, 55, -35, 1, 27, -26, -8, 57, -98, 120, -126, 120, -98, 56, 0, -54, 82, -62, 0, 62, -82, 55, -9, -19, 6, 35, -63, 55, -29, 16, -29, 55, -62, 27, 35, -82, 82, -35, -27, 62, -55, 28, -8, 1).
FORMULA
The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].
CROSSREFS
The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.
Sequence in context: A162297 A161858 A054334 * A266766 A026964 A026974
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 11 2016
STATUS
approved