This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266821 Expansion of Product_{k>=1} (1 + 3*x^k) / (1 - x^k). 4
 1, 4, 8, 24, 44, 88, 176, 312, 544, 924, 1584, 2552, 4136, 6488, 10128, 15632, 23748, 35640, 53080, 78136, 114024, 165552, 237744, 339544, 481248, 678236, 949008, 1321840, 1830376, 2521688, 3456672, 4717208, 6406680, 8666448, 11672464, 15660528, 20934868 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Convolution of A000041 and A032308. In general, for m > 0, if g.f. = Product_{k>=1} ((1 + m*x^k) / (1 - x^k)) then a(n) ~ sqrt(c) * exp(sqrt(2*c*n)) / (4*Pi*sqrt(m+1)*n), where c = 2*Pi^2/3 + log(m)^2 + 2*polylog(2, -1/m). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 5001 terms from Vaclav Kotesovec) FORMULA a(n) ~ sqrt(c) * exp(sqrt(2*c*n)) / (8*Pi*n), where c = 2*Pi^2/3 + log(3)^2 + 2*polylog(2, -1/3) = 7.16861897522987077909937377164783326088308015803... . MAPLE b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(       (t-> b(t, min(t, i-1)))(n-i*j), j=1..n/i)*4 +b(n, i-1)))     end: a:= n-> b(n\$2): seq(a(n), n=0..44);  # Alois P. Heinz, Aug 28 2019 MATHEMATICA nmax = 40; CoefficientList[Series[Product[(1+3*x^k) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] PROG (PARI) { my(n=40); Vec(prod(k=1, n, 4/(1-x^k) - 3 + O(x*x^n))) } \\ Andrew Howroyd, Dec 22 2017 CROSSREFS Cf. A000041, A015128, A032308, A264686. Column k=4 of A321884. Sequence in context: A212686 A316961 A180002 * A306484 A208901 A319721 Adjacent sequences:  A266818 A266819 A266820 * A266822 A266823 A266824 KEYWORD nonn AUTHOR Vaclav Kotesovec, Jan 04 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 19:53 EDT 2019. Contains 328319 sequences. (Running on oeis4.)