

A266779


Molien series for invariants of finite Coxeter group A_10.


2



1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 20, 23, 32, 38, 50, 59, 77, 90, 115, 135, 168, 197, 243, 283, 344, 401, 481, 558, 665, 767, 906, 1043, 1221, 1401, 1631, 1862, 2155, 2454, 2823, 3203, 3668, 4147, 4727, 5330, 6047, 6798, 7685, 8612, 9700, 10843, 12168, 13566, 15178, 16877, 18825, 20884, 23226, 25707, 28517, 31489, 34842, 38396
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

The Molien series for the finite Coxeter group of type A_k (k >= 1) has G.f. = 1/Prod_{i=2..k+1} (1x^i).
Note that this is the root system A_k not the alternating group Alt_k.


REFERENCES

J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.


LINKS

Ray Chandler, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 2, 3, 3, 3, 2, 1, 0, 2, 3, 4, 4, 5, 3, 1, 1, 3, 4, 5, 5, 4, 3, 1, 1, 3, 5, 4, 4, 3, 2, 0, 1, 2, 3, 3, 3, 2, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1).
Index entries for Molien series


FORMULA

G.f.: 1/((1t^2)*(1t^3)*(1t^4)*(1t^5)*(1t^6)*(1t^7)*(1t^8)*(1t^9)*(1t^10)*(1t^11)).


CROSSREFS

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776A266781.
Sequence in context: A097851 A266778 A107235 * A035949 A240014 A266780
Adjacent sequences: A266776 A266777 A266778 * A266780 A266781 A266782


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Jan 11 2016


STATUS

approved



