login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A266778 Molien series for invariants of finite Coxeter group A_9. 3
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 13, 20, 22, 31, 36, 48, 55, 73, 83, 107, 123, 154, 177, 220, 251, 306, 351, 422, 481, 575, 652, 771, 875, 1024, 1158, 1348, 1518, 1754, 1973, 2265, 2538, 2901, 3241, 3684, 4109, 4646, 5167, 5823, 6457, 7246, 8020, 8965, 9898, 11031, 12150, 13495, 14837, 16428, 18022, 19905, 21789, 23999, 26228, 28813 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The Molien series for the finite Coxeter group of type A_k (k >= 1) has G.f. = 1/Prod_{i=2..k+1} (1-x^i).

Note that this is the root system A_k not the alternating group Alt_k.

REFERENCES

J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

LINKS

Ray Chandler, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 1, 0, 0, -1, -1, -1, -1, -2, -1, 0, 1, 3, 3, 3, 2, 1, 0, -1, -4, -4, -4, -3, -2, 0, 2, 3, 4, 4, 4, 1, 0, -1, -2, -3, -3, -3, -1, 0, 1, 2, 1, 1, 1, 1, 0, 0, -1, -1, -1, 0, 1).

Index entries for Molien series

FORMULA

G.f.: 1/((1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)*(1-t^9)*(1-t^10)).

CROSSREFS

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.

Sequence in context: A027596 A007213 A097851 * A107235 A266779 A035949

Adjacent sequences:  A266775 A266776 A266777 * A266779 A266780 A266781

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 11 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 02:16 EDT 2019. Contains 327088 sequences. (Running on oeis4.)